Almost sure local well-posedness for the supercritical quintic NLS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant Weighted Wiener Measures and Almost Sure Global Well-posedness for the Periodic Derivative Nls

In this paper we construct an invariant weighted Wiener measure associated to the periodic derivative nonlinear Schrödinger equation in one dimension and establish global well-posedness for data living in its support. In particular almost surely for data in a Fourier-Lebesgue space FL(T) with s ≥ 1 2 , 2 < r < 4, (s − 1)r < −1 and scaling like H 1 2 (T), for small ǫ > 0. We also show the invari...

متن کامل

Almost sure local limit theorems

Chung and Erdös (1951) are among the first to prove some form of an almost sure local limit theorem (cf. Csáki et al., 1993). Here we propose a formulation of such statements and discuss related problems. Surely, Frits will enjoy them. c ©2001, June 19.

متن کامل

Global Well-posedness for Cubic Nls with Nonlinear Damping

u(0) = u0(x), with given parameters λ ∈ R and σ > 0, the latter describing the strength of the dissipation within our model. We shall consider the physically relevant situation of d 6 3 spatial dimensions and assume that the dissipative nonlinearity is at least of the same order as the cubic one, i.e. p > 3. However, in dimension d = 3, we shall restrict ourselves to 3 6 p 6 5. In other words, ...

متن کامل

Global Well-posedness of Nls-kdv Systems for Periodic Functions

We prove that the Cauchy problem of the Schrödinger-KortewegdeVries (NLS-KdV) system for periodic functions is globally well-posed for initial data in the energy space H1×H1. More precisely, we show that the nonresonant NLS-KdV system is globally well-posed for initial data in Hs(T) × Hs(T) with s > 11/13 and the resonant NLS-KdV system is globally wellposed with s > 8/9. The strategy is to app...

متن کامل

Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator

— Thanks to an approach inspired from Burq-Lebeau [6], we prove stochastic versions of Strichartz estimates for Schrödinger with harmonic potential. As a consequence, we show that the nonlinear Schrödinger equation with quadratic potential and any polynomial nonlinearity is almost surely locally well-posed in L(R) for any d ≥ 2. Then, we show that we can combine this result with the high-low fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tunisian Journal of Mathematics

سال: 2019

ISSN: 2576-7666,2576-7658

DOI: 10.2140/tunis.2019.1.427